HISTORICAL INTRODUCTION

IN the middle of the eighteenth century there was a prolonged
controversy as to the possibility of the expansion of an arbitrary
function of a real variable in a series of sines and cosines of
multiples of the variable. The question arose in connection with
the problem of the Vibrations of Strings. The theory of these
vibrations reduces to the solution of the Differential Equation
PY _ 2 Py
a2 =" Bu?
and the earliest attempts at its solution were made by D’Alem-
bert,* Kuler,i and Bernoulli.: Both I’Alembert and Euler
obtained the solution in the functional form

y=¢(x+at)+(x—at)

The principal difference between them lay in the fact that
D’Alembert supposed the initial form of the string to be given
by a single analytical expression, while Euler regarded it as
lying along any arbitrary continuous curve, different parts of
which might be given by different analytical expressions.
Bernoulli, on the other hand, gave the solution, when the string
starts from rest, in the form of a trigonometrical series

y=A,sinxcosat+ A,sin 2z cos 2at+...,

and he asserted that this solution, being perfectly general, must
contain those given by Euler and D’Alembert. The importance
of his discovery was immediately recognised, and Euler pointed
out that if this statement of the solution were correct, an
arbitrary function of a single variable must be developable in
an infinite series of sines of multiples of the variable. This he

* Mém. de I Académie de Berlin, 3, p. 214, 1747.
tloc. cit., 4, p. 69, 1748. Tloc. cit., 9, p. 173, 1753.
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2 HISTORICAL INTRODUCTION

held to be obviously impossible, since a series of sines is both
periodic and odd, and he argued that if the arbitrary function
had not both of these properties it could not be expanded in
such a series.

While the debate was at this stage a memoir appeared in 1759
by Lagrange, then a young and unknown mathematician, in
which the problem was examined from a totally different point of
view. While he accepted Euler’s solution as the most general, he
objected to the mode of demonstration, and he proposed to obtain
a satisfactory solution by first considering the case of a finite
number of particles stretched on a weightless string. From the
solution of this problem he deduced that of a continuous string by
making the number of particles infinite.t In this way he showed
that when the initial displacement of the string of unit length is
given by f(z), and the initial velocity by F(x), the displacement
at time ¢ is given by

1 w
Y = 2j D (sin nwa’ sin nra cos nwat) f(«)da’
01

2 &K1, . , . N
—I—CL—TL Z%(Sln nwa’ sin nre sin nwat) F(z")dx'.

This result, and the discussion of the problem which Lagrange
gave in this and other memoirs, have prompted some mathe-
maticians to deny the importance of Fourier’s discoveries, and to
attribute to Lagrange the priority in the proof of the development
of an arbitrary function in trigonometrical series. It is true
that in the formula quoted above it is only necessary to change
the order of summation and integration, and to put =0, in order
that we may obtain the development of the function f(z) in a
series of sines, and that the coefficients shall take the definite
‘integral forms with which we are now familiar. Still Lagrange
did not take this step, and, as Burkhardt remarks, { the fact that
he did not do so is a very instructive example of the ease with
which an author omits to draw an almost obvious conclusion
from his results, when his investigation has been undertaken
with another end in view. Lagrange’s purpose was to demon-

*Cf. Lagrange, Guvres, T. L., p. 37. tloc. cit., § 37.
+ Burkhardt, ¢ Entwicklungen nach oscillirenden Functionen,” Jahresber. 1.
Math. Ver., Leipzig, 10, Hft. IL., p. 32, 1901.
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strate the truth of Euler’s solution, and to defend its general
conclusions against D’Alembert’s attacks. When he had obtained
his solution he therefoce proceeded to transform it into the func-
tional form given by Euler. Having succeeded in this, he held
his demonstration to be complete.

The further development of the theory of these series was due
to the astronomical problem of the expansion of the reciprocal
of the distance between two planets in a series of cosines of
multiples of the angle between the radii. As early as 1749
and 1754 D’Alembert and Euler had published discussions of this
question in which the idea of the definite integral expressions
for the coefficients in Fourier’s Series may be traced, and Clairaut,
in 1757* gave his results in a form which practically contained
these coeflicients. Again, Euler,T in a paper written in 1777 and
published in 1793, actually employed the method of multiplying
both sides of the equation

f(x)=a,+2a,cos x4 2a,c08 2x 4 ...2a,c08 N+ ...

by cosnz and integrating the series term by term between the
limits 0 and 7. In this way he found that

= lj f(z) cos nx dw.
TJo

It is curious that these papers seem to have had no effect
upon the discussion of the problem of the Vibrations of Strings
in which,*as we have seen, D’Alembert, Euler, Bernoulli, and
Lagrange were about the same time engaged. The explanation
is probably to be found in the fact that these results were not
accepted with confidence, and that they were only used in deter-
mining the coefficients of expansions whose existence could be
demonstrated by other means. It was left to Fourier to place
our knowledge of the theory of trigonometrical series on a firmer
foundation, and, owing to the material advance made by him in
this subject the most important of these expansions are now
generally associated with his name and called Fourier’s Series.

His treatment was suggested by the problems he met in the
Mathematical Theory of the Conduction of Heat. It is to be

* Paris, Hist. Acad. sci., 1754 [59], Art. iv. (July 1757).
tPetrop. N. Acta., 11, 1793 [98], p. 94 (May 1777).
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found in various memoirs, the most important having been
presented to the Paris Academy in 1811, although it was not
printed till 1824-6. These memoirs are practically contained in
his book, Théorie mathématique de la chalewr (1822). In this
treatise several discussions of the problem of the expansion of a
function in trigonometrical series are to be found. Some of
them fail in rigour. One is the same as that given by Huler.
However, it is a mistake to suppose that Fourier did not estab-
lish in a rigorous and conclusive manner that a quite arbitrary
function (meaning by this any function capable of being re-
presented by an arc of a continuous curve or by successive
portions of different continuous curves), could be represented
by the series we now associate with his name, and it is equally
wrong to attribute the first rigorous demonstration of this
theorem to Dirichlet, whose earliest memoir was published in
1829.*% A closer examination of Fourier’s work will show that
the importance of his investigations merits the fullest recogni-
tion, and Darboux, in the latest complete edition of Fourier’s
mathematical works,T points out that the method he employed in
the final discussion of the general case is perfectly sound and
practically identical with that used later by Dirichlet in his
classical memoir. In this discussion Fourier followed the line
of argument which is now customary in dealing with infinite
series. He proved that when the values

1 . .,
ccoz—ﬂ_j_ﬂf(oc)cloc,

1{ ‘
Gy = —j f(x") cos na’ de,
L .

n—_1,

b,= }-Jﬁ f (az’j sin na’ da’,

are inserted in the terms of the series
@+ (a0, cos w+ by sin &) + (@, cos 2z + b, sin 2x) ...,

the sum of the terms up to cos nz and sin ne is

lr f(cc’)Sin 12n41) (' —)

™ sin & (¢’ — )

dax’.

He then discussed the limiting value of this sum as » becomes

* Dirichlet, J. Math., Berlin, 4, p. 157, 1829.
+ Furres de Fourier, T. 1., p. 512, 1888,
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infinite, and thus obtained the sum of the series now called
Fourier’s Series.
Fourier made no claim to the discovery of the values of the

coeflicients 1,

o= %j. . Jflx)H)da,

1{~ ; g
G = —j f(&") cos max’ da ,]
:— o U2 1.

b= ;j_ﬂj(m ) sin na’ de ,J
We have already seen that they were employed both by Clairaut
and Euler before this time. Still there is an important differ-
ence between Fourier’s interpretation of these integrals and
that which was current among the mathematicians of the
eighteenth century. The earlier writers by whom they were
employed (with the possible exception of Clairaut) applied them
to the determination of the coefficients of series whose existence
had been demonstrated by other means. Fourier was the first
to apply them to the representation of an entirely arbitrary
function, in the sense in which we have explained this term.
In this he made a distinct advance upon his predecessors.
Indeed Riemann* asserts that when Fourier, in his first paper to
the Paris Academy in 1807, stated that a completely arbitrary
function could be expressed in such a series, his statement so
surprised Lagrange that he denied the possibility in the most
definite terms. It should also be noted that he was the first to
allow that the arbitrary function might be given by different
analytical expressions in different parts of the interval; also that
he asserted that the sine series could be used for other functions
than odd ones, and the cosine series for other functions than
even ones. Further, he was the first to see that when a function
is defined for a given range of the variable, its value outside
that range is in no way determined, and it follows that no one
before him can have properly understood the representation of
an arbitrary function by a trigonometrical series.

The treatment which his work received from the Paris Academy

is evidence of the doubt with which his contemporaries viewed

* Cf, Riemann, ¢ Uber die Darstellbarkeit einer Funection durch eine trigono-
metrische Reihe,” Gottingen, Abh. Gles. Wiss., 13, §2, 1867.
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his arguments and results. His first paper upon the Theory of
Heat was presented in 1807. The Academy, wishing to en-
courage the author to extend and improve his theory, made the
question of the propagation of heat the subject of the grand
pric  de mathématiques for 1812.  Fourier submitted his
Mémoire sur la propagation de la Chalewr at the end of 1811
as a candidate for the prize. The memoir was referred to
Laplace, Lagrange, Legendre, and the other adjudicators; but,
while awarding him the prize, they qualified their praise with
criticisms of the rigour of his analysis and methods,* and the
paper -was not published at the time in the Mémoires de
UAcadémie des Sciences. TFourier always resented the treatment
he had received. When publishing his treatise in 1822, he
incorporated in it, practically without change, the first part of
this memoir; and two years later, having become Secretary of
the Academy on the death of Delambre, he caused his original
paper, in the form in which it had been communicated in 1811,
to be published in these Mémowvres.T  Probably this step was
taken to secure to himself the priority in his important discoveries,
in consequence of the attention the subject was receiving at
the hands of other mathematicians. It is also possible that he
wished to show the injustice of the criticisms which had been
passed upon his work. After the publication of his treatise,
when the results of his different memoirs had become known, it
was recognised that real advance had been made by him in the
treatment of the subject and the substantial accuracy of his
reasoning was admitted.}

* Their report is quoted by Darboux in his Introduction (p. vii) to Buvres de
Fourier, T. 1. :—** Cette piéce renferme les véritables équations différentielles de la
transmission de la chaleur, soit & Pintérieur des corps, soit & leur surface; et la
nouveauté du sujet, jointe & sonimportance, a déterminé la Classe & couronner cet
Ouvrage, en observant cependant que la maniére dont 1’Auteur parvient & ses
équations n’est pas exempte de difficultés, et que son analyse, pour les intégrer,
laisse encore quelque chose & désirer, soit relativement & la généralité, soit méme
du coté de la rigueur.”

+ Mémorires de I’ Acad. des Se., 4, p. 185, and 5, p. 153.

+ It is interesting to note the following references to his work in the writings
of modern mathematicians :

Kelvin, Coll. Works, Vol. II1., p. 192 (Article on *“ Heat,” Knc. Brit., 1878).

““ Returning to the question of the Conduction of Heat, we have first of all to
say that the theory of it was discovered by Fourier, and given to the world
through the French Academy in his Théorie analytique de la Chalewr, with
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The next writer upon the Theory of Heat was Poisson. He
employed an altogether different method in his discussion of the
question of the representation of an arbitrary function by a
trigonometrical series in his papers from 1820 onwards, which
are practically contained in his books, Traité de Mécanique
(T.T.(2° éd.) 1838),and Théorie mathématique de la Chalewr (1835).
He began with the equation

1—he % )
1= 27 cos (7 — 90)+h24: 14 221:70 cos n(x' —x),

solutions of problems naturally arising from it, of which it is difficult to say
whether their uniquely original quality, or their transcendently intense mathe-
matical interest, or their perennially important instructiveness for physical
science, is most to be praised.”

Darboux, Introduction, Euvres de Fourier, T. L., p. v, 1888.

““Par 'importance de ses découvertes, par Pinfluence décisive qu’il a exercée sur
le développement de la Physique mathématigue, Fourier méritait '’hommage qui
est rendu aujourd’hui & ses travaux et & sa mémoire. Son nom figurera digne-
ment a cOté des noms, illustres entre tous, dont la liste, destinée a s’accroitre
avec les années, constitue dés 4 présent un véritable titre d’honneur pour notre
pays. La Théorie analytique de la Chalewr . . . , que I'on peut placer sans
injustice & coté des écrits scientifiques les plus parfaits de tous les temps, se
recommande par une exposition intéressante et originale des principes fonda-
mentaux ; il éclaire de la lumiére la plus vive et la plus pénétrante toutes les
idées essentielles que nous devons & Kourier et sur lesquelles doit reposer
désormais la Philosophie naturelle ; mais il contient, nous devons le reconnaitre,
beaucoup de négligences, des erreurs de calcul et de détail que Fourier a su éviter
dans d’autres écrits.”

Poincaré, Théorie analytique de la propagation de la Chaleuwr, p. 1, § 1, 1891.

““La théorie de la chaleur de Fourier est un des premiers exemples de 'appli-
cation de l'analyse & la physique; en partant d’hypothéses simples qui ne sont
autre chose que des faits expérimentaux généralisés, Fourier en a déduit une
série de conséquences dont Pensemble constitue une théorie compléte et cohérente.
Les résultats qu’il a obtenus sont certes intéressants par eux-mémes, mais ce qui
Pest plus encore est la méthode qu’il a employée pour y parvenir et qui servira
toujours de modele a tous ceux qui voudront cultiver une branche quelconque de
la physique mathématique. J’ajouterai gue le livre de Fourier a une importance
capitale dans I'histoire des mathématiques et que I'analyse pure lui doit peut-étre
plus encore que 'analyse appliquée.”

Boussinesq, Théorie analyiique de la Chaleur, T. L., p. 4, 1901,

“ Les admirables applications qu’il it de cette méthode (z.e. his method of inte-
grating the equations of Conduction of Heat) sont, & la fois, assez simples et assez
générales, pour avoir servi de modele anx géometres de la premiere moitié de ce
siécle ; et elles leur ont été d’autant plus utiles, qu'elles ont pu, avec de légéres
modifications tout au plus, étre transportées dans d’autres branches de la
Physique mathématique, notamment dans 'Hydrodynamique et dans la Théorie
de Pélasticité.”
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h being numerically less than wunity, and he obtained, by
integration,

1—Ah? P
j S )1 2N cos (&' —w)+ I .

j f(a)da' -}-ZZIL"j f(x) cosn(z’ — ) da’.

While it is true that by proceeding to the limit we may
deduce that ‘
f(@) or §[f(z—0)+f(z+0)]

1s equal to

Lt |}~~j fa'y da’ + Z]L”J f(a'ycos n(x’ — x)da’ J

1

we are not entitled to assert that this holds for the value h=1,
unless we have already proved that the series converges for this
value. This is the real difficulty of Fourier’s Series, and this
limitation on Poisson’s discussion has been lost sight of in some
presentations of Fourier's Series. There are, however, other
directions in which Poisson’s method has led to most notable
results. The importance of his work cannot be exaggerated.®

After Poisson, Cauchy attacked the subject in different memoirs
published from 1826 onwards,T using his method of residues, but
his treatment did not attract so much attention as that given
about the same time by Dirichlet, to which we now turn.

Dirichlet’s investigation is contained in two memoirs which
appeared in 1829  and 1837.§ The method which he employed
we have already referred to in speaking of Fourier’s work. He
based his proof upon a careful discussion of the limiting values
of the integrals

j(f(cv) S;?nuj de...a>0,
jf( )S:.?nua;w ... b>a>0,

* For a full treatment of Poisson’s method, reference may be made to Bcher’s
paper, ‘‘ Introduction to the Theory of Fourier’s Series,” Ann. Math., Princeton,
N. J. (Ser. 2), 7, 1906.

1 See Bibliography, p. 303. tJ. Math., Berlin, 4, 1829,

§ Dove’s Repertorium der Physik, Bd. 1., p. 152, 1837.
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as u increases indefinitely. By this means he showed that the
sum of the series

y+(a, cos £+ b, sin @) 4 (aycos 2x+ b, sin 2x) - ...,
where the coefficients «,, etc., are those given by Fourier, is

Hf(=0)+fx+0)].. . —rm<zelm,
LA(=7+0)+f(mr—0)]...c=xm,
provided that, while — 7 < 2< 7, f(«) has only a finite number
of ordinary discontinuities and turning points, and that it does
not become infinite in this range. In a later paper,* in which he
discussed the expansion in Spherical Harmonics, he showed that
the restriction that f(z) must remain finite is not necessary,

provided that rf(w) dx converges absolutely.

The work of Dirichlet led in a few years to one of the most
important advances not only in the treatment of trigonometrical
series, but also in the Theory of Functions of a Real Variable ;
indeed it may be said to have laid the foundations of that theory.
This advance is to be found in the memoir by Riemann already
referred to, which formed his Habilitationsschrift at Gottingen
in 1854, but was not published till 1867, after his death.
Riemann’s aim was to determine the mecessary conditions which
J(x) must satisfy, if it can be replaced by its Fourier’s Series.
Dirichlet had shown only that certain conditions were sufficient.
The question which Riemann set himself to answer, he did not
completely solve: indeed it still remains unsolved. But in the
consideration of it he perceived that it was necessary to widen
the concept of the definite integral as then understood.

Cauchy, in 1823, had defined the integral of a continwous
function as the limit of a sum, much in the way in which it is
still treated in our elementary text-books. The interval of in-
tegration (a, b) is first divided into parts by the points
@, =Db.

W=y, Ty, Loy -ev Tpy_ 1,

The sum
S= (a2, —me)f () + (2 — @) f(@) + ... +(@u— 2, ) f(,)
b
is formed. And the integral j f(z)dx is defined as the limit of

43

*.J, Math., Berlin, 17, 1837.
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this sum when the number of parts is increased indefinitely and
their length diminished indefinitely. On this understanding
every continuous function has an integral.

For discontinuous functions, he proceeded as follows:

If a function f(x) is continuous in an interval (¢, b) except at
the point ¢, in the neighbourhood of which f(z) may be bounded
or not, the integral of f(x)in («, b) is defined as the sum of the

two limits c-h e
Lt j f(x)dx, Lt j f(x)de,
ct+h

h—=>0Ja h—>0
when these limits exist.

Riemann dismisses altogether the requirement of continuity,
and in forming the sum S multiplies each interval (z,—x,_,) by
the value of f(x), not necessarily at the beginning (or end) of the
interval, but at a point £, arbitrarily chosen between these, or by
a number intermediate between the lower and upper bounds of
f(x) in (z,_,, ). The integral r f(z)dx is defined as the limit
of this sum, if such exists, when the number of the partial
intervals is increased indefinitely and their length tends to zero.

Riemann’s treatment, given in the text in a slightly modified
form, is now generally adopted in a scientific treatment of the
Calculus. It is true that a more general theory of integration
has been developed in recent years, chiefly due to the writings
of Lebesgue* de la Vallée Poussin and Young; that theory is
mainly for the specialist in certain branches of Pure Mathe-
matics. But no mathematician can neglect the concept of the
definite integral which Riemann introduced.

One of the immediate advances it brought was to bring within
the integrable functions a class of discontinuous functions whose
discontinuities were infinitely numerous in any finite interval.
An example, now classical, given by Riemann, was the function
defined by the convergent series:

(2], [22]
1 +—1?+—22~+...
where [nz] denotes the positive or negative difference between
nz and the nearest integer, unless nx falls midway between two

consecutive integers, when the value of [nx] is to be taken as

7]
n2

* See footnote, p. 77.
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zero. The sum of this series is discontinuous for every rational
value of x of the form p/2n, where p is an odd integer prime
to n. :

With Riemann’s definition the restrictions which Dirichlet had
placed upon the function f(x) were considerably relaxed. To
this Riemann contributed much, and the numerous writers who
have carried out similar investigations since his time have still
further widened the bounds, while the original idea that every
continuous function admitted of such an expansion has been
shown to be false. Still it remains true that for all practical
purposes, and for all ordinary functions, Dirichlet’s investigation
established the convergence of the expansions. Simplifications
have been introduced in his proof by the introduction of the
Second Theorem of Mean Value, and the use of a modified form
of Dirichlet’s Integral, but the method which he employed is still
the basis of most rigorous discussions of Fourier’s Series.

The nature of the convergence of the series began to be ex-
amined after the discovery by Stokes (1847) and Seidel (1848) of
the property of Uniform Convergence. It had been known since
Dirichlet’s time that the series were, in general, only conditionally
convergent, their convergence depending upon the presence of
both positive and negative terms. It was not till 1870 that
Heine showed that, if the function is finite and satisfies
Dirichlet’'s Conditions in the interval (—m, =), the Fourier's
Series converges uniformly in any interval lying within an
interval .in which f(z) is continuous. This condition has, like
the other conditions of that time, since been somewhat modified.

In the last thirty or forty years quite a large literature has
arisen dealing with Fourier’s Series. The object of many of the
investigations has been to determine sufficient conditions to be
satisfied by the function f(x), in order that its Fourier’s Series
may converge, either throughout the interval (—m, =), or at
particular points of the interval. It appears that the convergence
or non-convergence of the series for a particular value of « really
depends only upon the nature of the function in an arbitrarily
small neighbourhood of that point, and is independent of the
general character of the function throughout the interval, this
general character being limited only by the necessity for the
existence of the coeflicients of the series. These memoirs—
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associated chiefly with the names of Du Bois-Reymond, Lipschitz,
Dini, Heine, Cantor, Jordan, Lebesgue, de la Vallée Poussin,
Hobson and Young—have resulted in the discovery of sufficient
conditions of wide scope, which suffice for the convergence of the
series, either at particular points, or, generally, throughout the
interval. The necessary and sufficient conditions for the con-
vergence of the series at a point of the interval, or throughout
any portion of it, have not been obtained. In view of the general
character of the problem, this is not surprising. Indeed it is not
improbable that no such necessary and sufficient conditions may
be obtainable.

In many of the works referred to above, written after the
discovery by Lebesgue (1902) of his general theory of integra-
tion, series whose terms did not exist under the old definition of
the integral are included in the discussion.

The fact that divergent series may be utilised in various
ways in analysis has also widened the field of investigation, and
indeed one of the most fruitful advances recently made arises
from the discussion of Fourier’s Series which diverge. The word
“sum,” when applied to a divergent series, has, of course, to be
defined afresh; but all methods of treatment agree in this, that
when the same process is applied to a convergent series the
“sum,” according to the new definition, is to agree with the
“sum ” obtained in the ordinary way. One of the most important
methods of “summation” is due to Cesaro, and in its simplest
form is as follows:

Denote by s, the sum of the first » terms of the series

Uyt Wyt g+ ... .
Lot Sn:81+82_;‘”+8n‘

When Lt S,=S8, we say that the series is “summable,” and

that its “sum” is S.
It is not difficult to show that if the series

Uy + o+ Uy ...
is convergent, then Lt S,= Lt s,,
N—> w0 HN—>n

so that the “ condition of consistency ” is satisfied. [Cf. § 102.]
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Fejér was the first to consider this sequence of Arithmetic
Means, ‘
s, 1 ‘gftz’ 81.+*;~3+°'3
for the Fourier’s Series. He established the remarkable theorem*
that the sequence is convergent, and its limit is

3(f(@+0)+f(z—0))
at every point in (—, 7) where f(z+0) and f(z—0) exist, the
only conditions attached to f(x) being that, if bounded, it shall

be integrable in (— 7, 7), and that, if it is unbounded, r f(x)dx
shall be absolutely convergent. -
Later, Hardy showed that if a series

U+ Uyt U+ ...
is summable by this method, and the general term u, is of the

order 1/n, the series is convergent in the ordinary sense, and thus
the sumn S (= Lt S,) and the sum s (= Lt s,) will be the same.

n—>w =D
[Cf §102.]

Hardy’s theorem, combined with Fejér’s, leads at once to a
new proof of the convergence of Fourier’s Series, and it can also
be applied to the question of its uniform convergence. Many of
the results obtained by earlier investigators follow directly from
the application to Fourier's Series of the general theory of
summable series.T

Recent investigations show that the coeflicients in Fourier’s
Series, now frequently called Fourier’s Constants, have im-
portant properties, independent of whether the series converges
or not. For example, it is now known that if f(x) and ¢(x)
are two functions, bounded and integrable in (—m, ), and «,,

4

. ’ ’
a,, b, are Fourier's Constants for f(z), and a;, a,, b, those

n

for ¢(x), the series

y e

@w
./ Ol ’ ’
Qa’Oa’O + 2 J(dna’ﬂ + bnbn)
1

. N .
converges, and its sum is j f(@)¢p(x)dx. To this theorem,
T on
* Math. Ann., Leipzig, 58, 1904.

tChapman, Q. J. Math., London, 43, 1912 ; Hardy, London, I’roc. Math. Soc.
(Ser. 2), 12, 1913.
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and to the results which follow from it, much attention has
recently been given, and it must be regarded as one of the most
important in the whole of the theory of Fourier’s Series.*

The question of the approximation to an arbitrary function by
a finite trigonometrical series was examined by Weierstrass in
1885.1  He proved that if j(z) is a continuous and periodic
function, given the arbitrary small positive quantity e, a finite
Fourier’s Series can be found in a variety of ways, such that the
absolute value of the difference of its sum and f(x) will be less
than e for any value of # in the interval. This theorem was
also discussed by Picard, and it has been generalised in recent
memoirs by Stekloff and Kneser.

In the same connection, it should be noted that the application
of the method of least squares to the determination of the
coefficients of a finite trigonometrical series leads to the Fourier
coefficients.  This result was given by Topler in 1876.f As
many applications of Fourier’s Series really only deal with a
finite number of terms, these results are of special interest.

From the discussion of the Fourier’s Series it was a natural
step to turn to the theory of the Trigonometrical Series

o+ (@, cos & 4 b,sin &)+ a,cos 2+ b,sin 22)+ ...,
where the coefficients are no longer the Fourier coefficients.
The most important question to be answered was whether such an
expansion was unique; in other words, whether a function could
be represented by more than one such trigonometrical series.
This reduces to the question of whether zero can be represented
by a trigonometrical series in which the coefficients do not all
vanish. The discussion of this and similar problems was carried
on chiefly by Heine and Cantor,§ from 1870 onwards, in a series
of papers which gave rise to the modern Theory of Sets of Points,
another instance of the remarkable influence Fourier’s Series have
had upon the development of mathematics.|| In this place it will

* Cf. Young, London, Proc. R. Soc. (A), 85, 1911,

tJ. Math., Berlin, 71, 1870.

+ Topler, Wien, Anz. Ak. Waiss., 13, 1876. § Bibliography, p. 305.

[ Van Vleck, “The Influence of Fourier’s Series upon the Development of Mathe-
matics,” American Association for the Advancement of Science (Atlanta), 1913.

See also a paper with a similar title by Jourdain, Seientiz, Bologna (Ser. 2), 22,
1917.



HISTORICAL INTRODUCTION 15

be sufficient to state that Cantor showed that all the coeflicients
of the trigonometrical series must vanish, if it is to be zero for
all values of = in the interval (—m, 7), with the exception of
those which correspond to a set of points constituting, in the
language of the Theory of Sets of Points, a set of the »™ order,
for which points we know nothing about the value of the series.
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